

CONTENIDO DEL PROGRAMA DE LA MATERIA **TERMODINAMICA**

PLAN DE ESTUDIOS 2004-2 INGENIERIA INDUSTRIAL Y DE SISTEMAS

1. Datos de Identificación

Institución Educativa		Universidad de Sonora		División	Ingeniería	
Licenciatura	Ingeniería	Industrial y	y de Sistemas	Departamento	Ingeniería Industrial	

Nombr	e de la Materia						
TERMODINÁMICA		Eje Formativo-Institucional				Básico	
		HT-C	HP-C	HL-C	Total Créditos	Requisitos	
		3-6	0-0	1-1	7	Aprobar:	NA
		Carácter Obligatorio			(X)	Cursar:	6883
	Carácter Optativo			()	Créditos:	NA	
Clave	IIS-IV6	Depto. Que da el servicio docente			Ingeniería Química y		
		Metalur			Metalurgía		

2. Objetivos: General y específicos

Definición del Objetivo General

Al finalizar el curso, explicará los fundamentos más importantes involucrados en el estudio de los sistemas termodinámicos.

Definición de los Objetivos Específicos

El alumno definirá los términos de Termodinámica, sistema, entorno, estado y propiedades de un sistema.

El alumno reafirmará el manejo de los principales sistemas de unidades y conversiones.

El alumno analizará la Ley Cero de la Termodinámica.

El alumno explicará conceptos básicos sobre los sistemas termodinámicos.

El alumno analizará la ecuación de energía y la Primera Ley de la Termodinámica.

El alumno describirá las principales Ecs. de Estado, las propiedades termodinámicas y su representación mediante diagramas.

El alumno empleará las Ecs. de Estado, diagramas y tablas de propiedades termodinámicas en la solución de diferentes tipos de procesos termodinámicos.

El alumno describirá el Ciclo de Carnot

El alumno analizará la 2ª. Y 3ª. Ley de la Termodinámica y resolverá problemas

El alumno aplicará los principios termodinámicos a los procesos de flujo.

3. Contenido Sintético

Temario General					
Orden	Tema General				
I	Introducción (Definiciones, Dimensiones Fundamentales y Derivadas, Unidades y				
	Conversiones, Ley Cero de la Termodinámica)				
II	Sistema termodinámico y la Primera Ley de la Termodinámica (Conceptos				
	Básicos, Equilibrio, Reversibilidad, Trabajo, Calor, Ec. de Energía y Primera Ley				
	de la Termodinámica)				
III	Propiedades Termodinámicas de las sustancias puras (Tipos, Relaciones,				
	Comportamiento PVT, Ec. Virial, Gas Ideal, Procesos Termodinámicos, Otras Ecs.				
	de Estado, Diagramas y Tablas)				
IV	Ciclo de Carnot y 2ª. Ley de la Termodinámica (Entropía y Energía,				
	Irreversibilidad, Ciclo de Carnot y 2ª. y 3ª. Ley de la Termodinámica)				
V	Aplicaciones de la Termodinámica a los procesos de flujo (Presión, Estática de				
	Fluidos, Ec. de Bernoulli, Flujo en Tubería, Equipos Mecánicos de Flujo)				

4. Estrategias Didácticas

(Modalidades o formas de conducción de los procesos de enseñanza y de aprendizaje. Señalar las principales actividades que realizarán tanto el maestro como el alumno)

Estrategias Didácticas				
1	Exposición del maestro y solución de problemas en clase			
2	Tareas extraclase.			
3	Simulacros de exámenes antes de cada evaluación parcial como guía de estudio.			
4	Exposición temática guiada (guión y preguntas) de grupos de alumnos.			
5	Revisión semanal de conceptos y tareas.			
6	Prácticas de laboratorio (componentes, cálculo de eficiencias y mejoras de			
	sistemas).			
7	Pizarrón y cañón de proyección.			

5. Estrategias de evaluación

(Modalidades y requisitos de evaluación y acreditación)

Instrucciones Generales:

Son las formas y procedimientos empleados por el profesor para conocer el proceso y el resultado del aprendizaje del alumno. Se pueden utilizar exámenes parciales, departamentales, asistencia a clase, tareas individuales y/o de grupo, prácticas, trabajos finales, asistencia a conferencias o eventos, exposiciones, etc... Cada aspecto de la evaluación debe ser ponderado.

Estrategias de Evaluación				
01	Exámenes parciales (4)	50%		
02	Solución de series de problemas por tema	15%		
03	Exposición grupal	5%		
04	Prácticas de laboratorio	10%		
05	Asistencia	10%		
06	Trabajo final	10%		
	NOTA IMPORTANTE: El promedio de las evaluaciones parciales debe ser mínimo 60, para ter contabilizar las otras actividades. Además, el trabajo final es obligatorio para tener derecho			

6. Bibliografía, documentación y materiales de apoyo.

Instrucciones Generales:

Se incluye la bibliografía y documentos básicos o indispensables que serán empleados durante el curso. Se recomienda incluir textos clásicos sobre el campo disciplinar, en un idioma diferente al español, reciente y publicaciones periódicas de carácter científico. Incluir recursos y medios de apoyo al aprendizaje y la enseñanza.

Bibliografía, documentación y materiales de apoyo.							
NUMERO	AUTOR	TITULO	EDITORIAL	EDICION	AÑO		
1	RUSSEL, LYNN D. Y ADEBIYI, GEORGE A.	TERMODINÁMICA CLÁSICA	PEARSON EDUCACIÓN	2ª. EDICIÓN	1997		
2	HUANG, FRANCIS F.	INGENIERÍA TERMODINÁMICA, FUNDAMENTOS Y APLICACIONES	C.E.C.S.A.	2ª. EDICIÓN, 4ª. REIMPRESIÓN	2001		
3	SMITH, J.M., VAN NESS, HENDRICKS C. AND ABBOTT MICHAEL	INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS	MC- GRAW HILL	6A. EDICIÓN	2001		
4	WARK, KEENETH, JR.	TERMODINÁMICA	MC-GRAW HILL	5ª. EDICIÓN, ESPAÑOL	1997		
5	ÇENGEL, YUNUS A. Y BOLES, MICHAEL A.	TERMODINÁMICA	MC-GRAW HILL	4ª. EDICIÓN	2002		

7. Perfil Académico deseable del responsable de la asignatura.

Ingeniero Químico ó Ingeniero Industrial ó carrera afín con experiencia en campo sobre sistemas de conversión de energía y flujo de fluidos.