

UNIVERSIDAD DE SONORA

DIVISIÓN DE INGENIERÍA

Departamento de Ingeniería Industrial

Programa: Ingeniería Mecatrónica Plan 2007-2

	ntrol I			Clave: 9958	Semestre: VII	
Tipo: Obligatoria H. Teor	ía: 2 H Práctica: 2	H. Laboratorio: 0	HSM: 4	Créditos: 6		

Requisitos:	Materia	Clave
-	Máquinas eléctricas	9945

Objetivo General:

El alumno comprenderá el análisis y la importancia de la ingeniería de control en su ámbito profesional. Así mismo resolverá y simulará diversos sistemas de control auxiliándose de prácticas y programas computacionales afines.

CONTENIDO DEL PROGRAMA

Nombre del Tema	Objetivo del tema	Hrs. por	Subtemas	Hrs. por	Referencia
		Tema		subtema	Libro/Capítulo
1.Introducción	-Comprenderá los conceptos generales	7	1.1 Función de transferencia	1	1/1
	involucrados con la teoría de control		1.2 Diagramas de bloques	2	2/3
			1.3 Sistemas en lazo abierto	1	3/1
			1.4 Retroalimentación en lazo	1	
			cerrado		
			1.5 Fundamentos generales de la teoría de control clásica y	1	
			moderna		
			1.6 Ejemplos de sistemas de	1	
			control		
2.Acciones básicas de control	- Comprenderá las acciones de control	7	2.1 Acciones básicas de control	1	3/3
	básicas en la teoría de control	,	2.2 Efectos de las acciones de	2	0,0
			control proporcional,	_	
			integral y derivativo en el		
			comportamiento del sistema		
			2.3 Reducción de la variación de	2	
			los parámetros mediante la		
			retroalimentación		

Clave: 9958 Página: 1 de 5

UNIVERSIDAD DE SONORA

DIVISIÓN DE INGENIERÍA

Departamento de Ingeniería Industrial

Programa: Ingeniería Mecatrónica Plan 2007-2

			2.4 Práctica 1	2	
3.Análisis de respuesta transitoria y análisis de error en estado estacionario	- Analizará las diversas variables involucradas en el análisis de la respuesta de un sistema de n orden - Usará el programa MATLAB® como herramienta de simulación - Reforzará los conocimientos adquiridos mediante experimentos de laboratorio	12	 3.1 Sistemas de primer orden 3.2 Sistemas de segundo orden 3.3 Sistemas de orden superior 3.4 Criterio de estabilidad de Routh 3.5 Análisis de error en estado estacionario 3.6 Práctica 2 	2 2 2 2 2 2	1/4 1/6 2/6 2/7 3/5
4. Análisis del lugar de las raíces y respuesta en frecuencia	- Estudiará la estrategia del análisis del lugar de las raíces, respuesta en frecuencia y sus relaciones con la estabilidad de un sistema - Usará el programa MATLAB® como herramienta de simulación - Reforzará los conocimientos adquiridos mediante experimentos de laboratorio	11	 1.1. Diagramas y reglas generales del lugar de las raíces 1.2. Diagrama de Bode 1.3. Análisis de estabilidad 1.4. Estabilidad Relativa 1.5. Respuesta en frecuencia de lazo cerrado 1.6. Práctica 3 	2 2 2 2 1	1/7 1/8 2/8 2/9 3/6 3/7 3/8
5. Diseño y compensación	- Analizará las diversas técnicas involucradas con la compensación y el diseño de controladores proporcionalesintegrales y derivativos (PID) - Usará el programa MATLAB® como herramienta de simulación - Reforzará los conocimientos adquiridos mediante experimentos de laboratorio	10	 1.7. Compensación en adelanto 1.8. Compensación en atraso 1.9. Compensación en atraso-adelanto 1.10. Reglas de sintonización para controladores PID 1.11. Práctica 4 	2 2 2 2 2	1/9 2/10 3/9 3/10
6. Análisis y diseño por métodos de teoría de control moderna	- Analizará y comprenderá la importancia de utilizar la teoría de control moderna - Usará el programa MATLAB® como herramienta de simulación - Reforzará los conocimientos adquiridos mediante experimentos de laboratorio	22	 1.12. Conceptos básicos para el análisis en el espacio de estado 1.13. Matriz de transferencia 1.14. Controlabilidad 1.15. Observabilidad 1.16. Formas caónicas de las ecuaciones de estado 	1 2 2 2 2 2 2	1/3 1/11 2/5 3/11

Clave: 9958 Página: 2 de 5

UNIVERSIDAD DE SONORA

DIVISIÓN DE INGENIERÍA

Departamento de Ingeniería Industrial

Programa: Ingeniería Mecatrónica Plan 2007-2

		1.17. 1.18.	Lyapunov Diseño de sistemas de	2	
		1.19.	control mediante ubicación de polos Diseño de observadores de	2	
		1.20.	estado Sistemas de control	2	
		1.21.		2	
		1.22.		1	
		1.23.	sistemas no lineales Práctica 5	2	
7. Proyecto Final	- Realizará un proyecto donde involucre los conceptos aprendidos en el curso y defina la importancia y funcionalidad actual del sistema de control escogido para el proyecto				

Clave: 9958 Página: 3 de 5

UNIVERSIDAD DE SONORA

DIVISIÓN DE INGENIERÍA

Departamento de Ingeniería Industrial

Programa: Ingeniería Mecatrónica Plan 2007-2

METODOLOGÍA Y RECURSOS DIDÁCTICOS

- Se recomienda el uso de Matlab como plataforma de simulación.
- Uso de Word de Microsoft Office como plataforma para la entrega de tareas y reportes
- Proyecciones en power point ilustrando la teoría de los circuitos eléctricos
- Problemas resueltos y propuestos
- Tareas de investigación
- Proyecto final

FORMA DE EVALUACIÓN

- Primer parcial	20%
- Segundo parcial	20%
- Tercer Parcial	20%
- Proyecto final	30%
- Tareas	10%

PERFIL ACADÉMICO DEL MAESTRO

Maestro o Doctor en Ciencias con especialidad en Ingeniería Eléctrica con conocimientos en control automático, modelado y simulación. Experiencia en el diseño de proyectos del área de Mecatrónica

Clave: 9958 Página: 4 de 5

UNIVERSIDAD DE SONORA

DIVISIÓN DE INGENIERÍA

Departamento de Ingeniería Industrial

Programa: Ingeniería Mecatrónica Plan 2007-2

BIBLIOGRAFÍA:

NUMERO	AUTOR	TITULO	EDITORIAL	EDICIÓN	AÑO
1	R. C. Dorf, R. H. Bishop	Sistemas de Control Moderno	PEARSON	DECIMA	2005
2	B. C. Kuo	Sistemas de Conyrol Automático	PEARSON	SEPTIMA	1996
3	K. Ogata	Ingeniería de control Moderna	PEARSON	CUARTA	2003

Clave: 9958 Página: 5 de 5